

¹⁾ Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark • ²⁾ Finnish Meteorological Institute, Erik Palménin aukio 1, FI-00560, Helsinki, Finland

- 'floating' weather station position and elevation
- the quality of in situ radiation observations

$$SWE = -L \cdot \ln\left(\frac{N}{N_0}\right)$$

$$\frac{1}{L} = \frac{1}{L_{max}} + \left(\frac{1}{L_{min}} - \frac{1}{L_{max}}\right) \cdot \left(1 + \exp\left[-\frac{N}{N_0} - a_1\right]\right)^{-a_2}$$

$$N = F(t) \cdot N_{raw}$$

$$F(t) = f_{bar} \cdot f_{sol}$$

$$f_{sol} = \frac{M_0}{M(t)}$$

First results from new automated instruments PROMICE Programme for Monitoring of the Greenland Ice Sheet measuring SWE, position and more on the Greenland Ice Sheet

INTAROS Andreas P. Ahlstrøm¹, Robert S. Fausto¹, Michele Citterio¹, Roberta Pirazzini², Teijo Arponen², Jason E. Box¹

EU Horizon2020 Grant Agreement No. 727890 INTAROS

Requirements

- Data rate: record for 2 hours and deliver at least one accurate position per day in winter, record 24/7 and deliver up to one accurate position per hour in summer
- Accuracy: 0.5 m 1σ within 24 hours from observation, cm-scale (postproc.)
- Data storage: 2 years of data
- Power: run on less than 500 Wh of battery power through the polar night, on solar power during summer
- Communication: serial communication to GEUS AWS and Iridium SBD satellite service
- System configuration: standalone or connected to a PROMICE AWS

Radiometer characterization

The schematic representation of the rotatory stage us for the angular characterization of the radiometers, incl ding the mechanical jiigs required to attached the inst ments, is illustrated below.

The angular and thermal characterization is performed using a 250 W calibrated lamp. In addition to the mecha cal components, we also developed the software to co trols the characterization experiments in the temperate controlled chamber and on the two-axis rotatory stage.

Above: schematic representation of a Kipp and Zonen r radiometer attached to the two-axis rotatory stage: (a) 2D views of the light path and of the rotation axis (b) 3D view of the system

able 2.1.2, power consumption (2.5 V < supply voltage < 18 V unless otherwise stated)				
NTAROS GNSS receiver, dual requency	Measurement condition	Average power consumption		
1, L2 logging (GPS, GLONASS)	5 sec., see Table 2.1.3 for details	0.7 W		
tandby		2 mW		
ime-keeping only	no supply voltage (needs backup battery)	0.1 mW		
NTAROS GNSS receiver, triple requency		average power consumption		
1, L2, L5 logging (GPS, GLONASS, Galileo)	5 sec., see Table 2.1.3 for details	1.1 W		
1, L2 logging (GPS, GLONASS)	5 sec., L5 and Galileo disabled	0.9 W		
tandby		2 mW		
ime-keening only	no supply voltage (needs backup	0.1 mW		

NTAROS tilt and azimuth	Measurement condition	Average
		power
		consumption
actively measuring, all outputs active	first 5 sec. from power-up, 0 output current	40 mA
neasurement paused, all outputs	0 output current	5 mA

Our action list...

	SWE on ice sheet	Based on the results of the first
		deployment, we plan to fine-tune the
		instrument parameters and develop a
		solution to the power
		consumption/supply which is currently
sea		inadequate for wintertime operation
clu-	Precise positioning	Remaining GNSS units will be produced
ru-	on ice sheet	and the communication issues with the
		Campbell logger addressed.
		Subsequently, the new GNSS units will
		be implemented at the selected
ned		PROMICE and GEM sites visited in 2020
ni-		as part of routine maintenance
on-	Tilt & azimuth of	Remaining tilt/azimuth units will be
	radiometers	produced and the communication issues
ure		with the Campbell logger addressed.
2.		Subsequently, the new tilt/azimuth
		units will be implemented at the
		PROMICE and GEM sites visited in 2020
		as part of routine maintenance
	Rain gauges on ice	Experimental deployment of rain gauges
	sheet	is continued through 2020, with
		implementation of a new AWS system
*		including a rain gauge at all >20
		PROMICE locations starting in 2021. The
		implementation phase of this new AWS
		system is expected to be on the order of
net		4 years
	Radiometer	The net radiometers recovered from the
	characterization	PROMICE network during summer 2019
		will be characterized in winter 2020-
		2021